
 

 
NAVAL 

POSTGRADUATE 
SCHOOL 

 
MONTEREY, CALIFORNIA 

 

 
THESIS 

 

Approved for public release; distribution is unlimited 

EVALUATION OF CUMMULATIVE SUM (CUSUM) AND 
EXPONENTIALLY WEIGHTED MOVING AVERAGE 

(EWMA) CONTROL CHARTS TO DETECT CHANGES IN 
UNDERLYING DEMAND TRENDS OF NAVAL AVIATION 

SPARES 
 

by 
 

Les Wetherington 
 

September 2010 
 

 Thesis Advisor:   David Olwell 
 Second Reader: Ron Carlson 



THIS PAGE INTENTIONALLY LEFT BLANK 



 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, 
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send 
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to 
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503. 
1. AGENCY USE ONLY (Leave blank) 
 

2. REPORT DATE   
September 2010 

3. REPORT TYPE AND DATES COVERED 
Master’s Thesis 

4. TITLE AND SUBTITLE  
Evaluation of CUSUM and EWMA Control Charts to Detect Changes in Underlying 
Demand Trends of Naval Aviation Spares 
6. AUTHOR(S)  Les Wetherington 

5. FUNDING NUMBERS 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Naval Postgraduate School 
Monterey, CA  93943-5000 

8. PERFORMING ORGANIZATION 
REPORT NUMBER     

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
N/A 

10. SPONSORING/MONITORING 
    AGENCY REPORT NUMBER 

11. SUPPLEMENTARY NOTES  The views expressed in this thesis are those of the author and do not reflect the official policy 
or position of the Department of Defense or the U.S. Government. 
12a. DISTRIBUTION / AVAILABILITY STATEMENT   
Approved for public release; distribution is unlimited 

12b. DISTRIBUTION CODE A 

13. ABSTRACT (maximum 200 words)  
 

The Navy must keep aircraft in a high state of readiness around the globe requiring spare parts to be 
available when and where needed.  Managers need to know when changes in demand patterns are occurring far 
enough in advance to ensure continued availability of needed spare parts.  This thesis presents an evaluation of two 
techniques using widely available software operating in a Windows environment to determine if changes are 
occurring in underlying demand patterns.  These techniques are Cumulative Sum Control Charting and Exponentially 
Weighted Moving Average Control Charting.   The use of the techniques was validated using a computer generated 
data set with known variation characteristics, and related processes were developed.  After validation, the techniques 
were applied to four actual data sets with demand information from Navy aircraft.  Both techniques proved effective 
with Cumulative Sum Charting providing slightly earlier alarms, and Exponentially Weighted Moving Averages 
being easier to use.  Use of these techniques could allow detection of changes in time to mitigate the negative effects 
of the change and could be applied to a very wide range of processes.  For the Navy, the widespread use of these 
techniques could lead to more aircraft being available for combat missions.    

 
 

15. NUMBER OF 
PAGES  

77 

14. SUBJECT TERMS Cumulative Sum Control Charts, Exponentially Weighted Moving Average 
Control Charts, Changes in Spares Requirements, , Detection of Changes in Underlying Demand 
Trends 

16. PRICE CODE 

17. SECURITY 
CLASSIFICATION OF 
REPORT 

Unclassified 

18. SECURITY 
CLASSIFICATION OF THIS 
PAGE 

Unclassified 

19. SECURITY 
CLASSIFICATION OF 
ABSTRACT 

Unclassified 

20. LIMITATION OF 
ABSTRACT 
 

UU 
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)  
 Prescribed by ANSI Std. 239-18 



 ii

THIS PAGE INTENTIONALLY LEFT BLANK 



 iii

Approved for public release; distribution is unlimited 
 
 

EVALUATION OF CUSUM AND EWMA CONTROL CHARTS TO DETECT 
CHANGES IN UNDERLYING DEMAND TRENDS OF NAVAL AVIATION 

SPARES 
 

 
Les O. Wetherington, Jr. 

Civilian, United States Navy, Patuxent River, Maryland 
B.S., N.C. State University, 1977 

 
 

Submitted in partial fulfillment of the 
requirements for the degree of 

 
 

MASTER OF SCIENCE IN SYSTEMS ENGINEERING 
 
 

from the 
 
 

NAVAL POSTGRADUATE SCHOOL 
September 2010 

 
 
 

Author:  Les Wetherington, Jr.  
 
 
 

Approved by:  Dr. David Olwell 
Thesis Advisor 

 
 
 

Professor of Practice Ron Carlson 
Second Reader 

 
 
 

Dr. Clifford Whitcomb 
Chairman, Graduate School of Engineering and Applied Sciences 



 iv

THIS PAGE INTENTIONALLY LEFT BLANK 



 v

ABSTRACT 

The Navy must keep aircraft in a high state of readiness around the globe requiring spare 

parts to be available when and where needed.  Managers need to know when changes in 

demand patterns are occurring far enough in advance to ensure continued availability of 

needed spare parts.  This thesis presents an evaluation of two techniques using widely 

available software operating in a Windows environment to determine if changes are 

occurring in underlying demand patterns.  These techniques are Cumulative Sum Control 

Charting and Exponentially Weighted Moving Average Control Charting.   The use of the 

techniques was validated using a computer generated data set with known variation 

characteristics, and related processes were developed.  After validation, the techniques 

were applied to four actual data sets with demand information from Navy aircraft.  Both 

techniques proved effective with Cumulative Sum Charting providing slightly earlier 

alarms, and Exponentially Weighted Moving Averages being easier to use.  Use of these 

techniques could allow detection of changes in time to mitigate the negative effects of the 

change and could be applied to a very wide range of processes.  For the Navy, the 

widespread use of these techniques could lead to more aircraft being available for combat 

missions.    
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EXECUTIVE SUMMARY 

Maintaining aircraft in a high state of readiness around the globe is very challenging for 

the Navy.  To keep the aircraft repaired and ready for missions, managers must allocate 

scarce resources to keep spare parts available for use by maintainers when and where 

needed.  Responsible inventory managers must make predictions for future demand using 

historical demand data.  This works well if the future demand doesn’t deviate too much 

or too quickly from the historical demand.  However, if the underlying data distributions 

of the spare requirements change, the predictions made can be in error leading to too 

many spare parts if demand is falling or a lack of spare parts if demand is increasing.  

Too many supply parts indicate that resources were not used efficiently.  Too few spare 

parts can lead to aircraft not being available for their missions due to lack of the correct 

repair parts.  Thus it is very important for managers to know if the underlying demand 

distribution of the spares requirements is changing.   

While managers want to know quickly about a change, they do not want false 

alarms.  The tradeoff between fast response to changes and the number of false alarms is 

a key design consideration for any monitoring system and is discussed in detail in this 

thesis.    

In order to monitor any process, it is very important to know what data is 

available and representative of the process. Within the Navy, a component is coded as 

Beyond Capability of Maintenance (BCM) if it cannot be repaired by the fleet and a 

requisition for a replacement component is prepared.  One could use either the requisition 

data or the BCM data as representative of the total demand on the wholesale supply 

system.  Historical BCM data is much easier to obtain than historical wholesale demand 

data, thus BCMs were chosen as the data element to be analyzed. 

One goal of the thesis was to develop the processes to create CUSUM and 

EWMA charts using widely available tools.  Thus Minitab 16 was chosen as the statistics 

program as it is used widely in industry and the military.  Another program, Anygeth.exe,  

 



 xii

is needed to determine the correct variables for CUSUM charts.  This program is 

available for free on the internet and directions are contained in the thesis to download 

the program.   

The research was performed in two phases: validation of methodologies, and 

analysis of components.  To first validate the analysis methodologies, a data set with 

known characteristics was analyzed using CUSUM and EWMA control charts.  The data 

set was formed by combining two data sets with the first 500 data points following a 

Poisson distribution with a mean of 0.5, and the second 500 data points following a 

Poisson distribution with a mean of 0.7.   This computer generated data set was created to 

follow the type of variation, a persistent shift in mean, for which a CUSUM control chart 

is most exactly tailored to detect.  By comparing CUSUM and EWMA charts generated 

against a data set with known characteristics, the methodologies were validated to 

develop the CUSUM and EWMA charts using Anygeth.exe and Minitab.       

Next, CUSUM and EWMA control charts were generated for the remaining four 

real data sets and the results were compared to each other relative to the known 

variability in the data sets.  The effectiveness of the charts relative to determining shifts 

in underlying trends and the efficiency of the charts relative to the time and expertise 

required to generate the charts were compared.    

Both CUSUM and EWMA were capable of detecting shifts in demand data.  

CUSUM generally provided a slightly faster alarm, but required considerably more 

expertise and time to use.  A unique set up along with an understanding the underlying 

data distribution was required for each component when developing CUSUM charts.  

EWMA charts tended to be slightly slower in providing alarms, but were much easier to 

set up with a single set up required for all components for a given ARL.  Overall EWMA 

charts are more efficient to use with a slight loss in effectiveness.  With the use of these 

tools, Navy managers could take a more proactive response to issues enabling more 

aircraft to be in a state of combat readiness.   

While this thesis focused on a specific issue of spares for Navy aircraft, the 

concepts and methodologies developed within this thesis would readily apply to any 



 xiii

process for which the user wanted to detect changes in sufficient time to allow mitigating 

actions.  Recommendations were made for further research that could automate these 

processes and provide more information about how to solve the specific issue in addition 

to detecting the issue.     
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I. INTRODUCTION 

A. BACKGROUND 

U.S. Naval Air Forces face the difficult challenge of supporting aircraft in harm’s 

way in locations covering the globe.  Behind the scenes, the Navy manages a massive 

repair supply system with the complex task of keeping the right repair parts in stock at 

the right place and right time with limited resources and with constantly changing 

mission requirements.   Inventory managers must make predictions about future demand 

for parts in order to allocate scarce resources in sufficient time for parts to be available 

when needed. With limitations on existing prediction techniques and funding, the 

components needed to return an aircraft to Ready For Tasking (RFT) status are many 

times not available when and where they are needed, leading to specific aircraft being 

placed in non-RFT status and thus unavailable to perform the required missions.    

The Navy’s supply system currently relies on data taken from requisitions for 

parts from military customers to make predictions of future supply requirements, and 

bases the planned repair rate in commercial and organic depots on these predictions.   

This data is called “demand” data since it is based on the demand for parts by users.  The 

demand data is often characterized by spikes when there is a sudden increase in demand 

and plateaus when demand falls to zero for periods of time.    

Often, it is very difficult for a manager to predict future demand, as the manager 

cannot tell whether a spike or plateau in the data represents a true change in the 

underlying demand distribution, or just represents a transient signal.  Reacting to a 

transient signal or false alarm, and not reacting to a true demand shift signal both have 

negative consequences, although they may not be symmetrical with one another.  

Reacting to a false alarm causes the needless expenditure of scarce resources and the 

diversion of those resources from other areas where they may be critically needed.  Not 

reacting to a true increasing demand signal can cause aircraft to be unavailable for critical  
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missions due to lack of spare parts.  Thus, managers need to be able to differentiate 

between a true demand change and a transient signal in order to most effectively support 

Navy aircraft.   

By using the proper statistical methods, a manager can design a system to detect 

true demand distribution changes with a known false alarm rate, thus limiting false 

alarms to an acceptable level.  Reducing false alarms does come at a price and that price 

is the delay in accumulating enough evidence to generate a signal.   However, the user 

may consciously balance the false alarm rate while in control with the reaction time delay 

when out of control to design the alarms based on the criticality or price of the 

component under study.  If the responsible managers can receive valid warnings of 

changes in usage trends in sufficient time, they can take more informed mitigating 

actions.  For example, a manager could increase production or correct the cause of the 

change in trend before a zero shelf stock condition occurs and aircraft becomes non-RFT 

for lack of repair parts.   Thus, the use of a proper statistical method serves as an effective 

tool in the life-cycle management of aviation assets.  Managers may use these tools to 

optimize the availability of Navy aircraft in the fiscally restrained repair supply system 

allowing our naval aviators to do their important missions for our nation’s defense.     

B. PURPOSE OF STUDY 

This thesis will demonstrate and compare the effectiveness of two statistical 

methods that may be useful to meet the manager’s requirement for detecting changes in 

underlying demand for spare components with known false alarm rates:   CUSUM and 

EWMA control charts.   In this case, they will be applied to the BCM actions from the 

entire fleet, per week as this data is much more widely available within the Naval 

Aviation community than the related supply demand data.   Fleet BCMs and supply 

demand are highly correlated and are discussed in detail in Chapter II.     

C. RESEARCH QUESTIONS 

1. What demand representative data is collected within U.S. Naval Air 
Forces for which current and historical data is readily available?   
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2. How effective are CUSUM and EWMA control charts in detecting 
changes in underlying demand patterns with a pre-determined false alarm 
rate? 

3. What processes and level of expertise are required to use these techniques 
within the Naval Aviation environment?    

4. Does one technique stand out as being more efficient or more effective 
and thus should be recommended for use in this environment? 

D. BENEFITS OF STUDY 

The evidence analyzed in this paper reveals that EWMA control charts are nearly 

as effective as CUSUM charts while requiring much less user skill and expertise to 

implement. Thus, more managers could use this technique to monitor the Navy 

maintenance system, and allow us to keep more aircraft in RFT status using fewer scarce 

resources.    As discussed in the following paragraph, these findings may have general 

application well beyond aircraft maintenance.   

E. SCOPE AND METHODOLOGY 

The scope of this paper covers the use of CUSUM and EWMA techniques with 

commercially available software to detect changes in demand patterns for naval aviation 

spares.  However, the findings may be equally as applicable to any type of process under 

statistical control for which the reader desires to know if the underlying distribution of 

data is changing.    

For the overall methodology, the author validated the process of developing 

CUSUM and EWMA charts using a designed data set, compared the results from 

CUSUM and EWMA analysis of four real data sets, and provided a generalized analysis 

of the efficiency and effectiveness of the techniques.  For both the CUSUM and EWMA 

techniques, the Average Run Length (ARL), or the time between false alarms, was set at 

approximately 100 weeks.  The validation data set was for an imaginary component “Z”, 

with known distribution and change in distribution, such that the change in distribution 

was designed specifically to optimize detection by CUSUM.  The four real data sets 

contained the demand figures for actual naval components in operation in the fleet where  

 



 4

the variability in demand ranged from very low to extreme.  By using four data sets 

spanning the range of variability as seen in the fleet, the analysis could be applicable to a 

wide range of systems in operation in the Navy.    

Minitab version 16 and Excel 2007 for Windows were used in the analysis, as 

well as a program called Anygeth.exe, that is available for free via the Internet.   

Directions to obtain Anygeth.exe are provided in a later section of this paper.  All of these 

programs are available to most users who might wish to explore the techniques used in 

this paper.   

In summary, the methodology consisted of examining the effectiveness and 

efficiency of the CUSUM and EWMA techniques in regards to their ability to detect 

changes in underlying data distributions of representative data sets, while maintaining a 

predetermined false alarm rate.   The findings could be of value to any reader who desires 

to monitor any process.   
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II. AIRCRAFT MAINTENANCE OVERVIEW  

A. INTRODUCTION 

This section will provide a general overview of the operations of aircraft within 

the Naval Air Forces and discuss how maintenance is performed and data is collected 

during maintenance and operations.   While a massive amount of data is gathered by the 

Navy, it is important to choose the right data to analyze to detect specific changes.  By 

showing how the data is gathered and what the data represents, the author will provide 

the rationale for the use of analysis of BCMs as the main indicator of changes in the 

supply demand patterns for the aircraft.   With sufficient warning time of a change in 

demand pattern, Navy managers may be better able to take actions that would reduce the 

negative impacts of the change, such as running out of inventory of spare parts, and thus 

be able to keep aircraft availability high.   

B. THREE LEVELS OF AIRCRAFT MAINTENANCE 

The Navy has three levels of maintenance.  They are: the Organizational Level or 

“O level,” Intermediate Level or “I level,” and the Depot Level or “D Level.”   At the O 

level, the primary focus is on returning an aircraft to RFT status.  This includes routine 

servicing of the aircraft, and removal and replacement of failed components or Weapons 

Replaceable Assemblies (WRAs) as they are called within the Navy. At the I level, the 

primary focus is on repairing failed WRAs that have been removed by the O level.  

Typically, WRAs are repaired by exchanging modules or Shop Replaceable Assemblies 

(SRAs) at the I level.  Both O and I levels are mostly staffed with military personnel.  

These military personnel may deploy to locations all over the globe as required by 

operational demands of the services.   The D level is staffed primarily with civilians and 

these civilians do the most extensive maintenance of all levels.  WRAs and SRAs that are 

declared Beyond the Capability of Maintenance (BCM) from the I level are repaired at 

the D level.     
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C. FLOW OF DATA AND COMPONENTS WITHIN THE NAVAL AIR 
FORCES  

The tracking of maintenance data begins when a component fails on the aircraft.  

The failed component is removed at the O level and the data trail begins. Thus, when the 

O level determines that a WRA has failed, the WRA is removed from the aircraft and this 

removal is recorded on a Maintenance Action Form (MAF) within the 3M system, a data 

system used by the Navy and Marine Corps where the “Ms” stand for “Maintenance”, 

“Material”, and “Management”.  The suspected to be faulty WRA is taken to the local 

supply organization and exchanged for an “A” condition WRA.  (“A” condition means 

that the component fully functional and is ready for installation on an aircraft.)   The “A” 

condition WRA comes from retail stock, if stocked locally, or wholesale stock, if stocked 

remotely from a centralized location.  A local retail stock is in place if there is a history 

of demand and readiness impact shows that it is cost effective to stock the items locally.   

The organizational level maintenance activity will then install the “A” condition WRA 

into the aircraft, run any associated Built In Test, record the installation on the MAF,  and 

ready the aircraft for its next flight, returning the aircraft to RFT status.  This completes 

the O level action for this failure. 

The suspected failed WRA, on the other hand, now begins its path through the 

system.  It is now considered “F” condition stock, meaning that it is not functional.   The 

local retail supply will send the WRA to the appropriate I level maintenance activity for 

repair.  If the I level maintenance activity can repair the WRA, they do so and return it to 

the local retail supply as an “A” condition asset (replacing the previously issued “A” 

condition asset).  The I level maintenance activity will indicate on a MAF in the 3M 

system that this was verified as a failure and that they repaired the item.  If the I level 

maintenance activity cannot repair the item, then they will code it as a BCM in the 3M 

system and return it to the local retail supply organization as “F” condition stock.  The 

local retail supply organization will then return the “F” condition stock to the wholesale 

supply level and a supply document known as a replenishment requisition will be 

submitted for a replacement item for local retail stock.  From the wholesale level, the “F” 

condition asset will be scheduled for induction into a D Level maintenance activity for 
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repair as scheduled to maintain the “A” condition asset level with control limits at the 

wholesale level.   The wholesale level may also purchase new units to replace those that 

cannot be economically repaired at the D level.  Through the processes discussed in this 

paragraph, the failed WRA is repaired and returned to the supply system for use, or 

scrapped and a new WRA is procured to replace it.  

What is important to note here is that demand patterns may be very different at 

the different levels of the system with very different impacts on aircraft availability.  If 

the I level has significant repair capability, there could be large number of failures on the 

aircraft and subsequent demand upon the retail level stock, but little or no demand upon 

the wholesale level.   As long as the I level can repair components and the O level can 

replace them on the aircraft in a timely manner, the availability of the aircraft will remain 

high regardless of the failure rate of the component.  (The cost of maintaining highly 

unreliable components is another issue and is not considered within this paper.) However, 

if the I level loses the equipment or skilled personnel to do a repair, the demand at the 

wholesale level could easily spike.  For example, if the I level has full capability to repair 

a generator from an aircraft, the wholesale level may see no demand at all for the 

generator as long as the I level can repair all of generators that fail.  However, if the I 

level test bench for the generator fails and cannot be repaired, all of the generators that 

fail on the aircraft will be coded as a BCM from the I level and become demand upon the 

wholesale level.  The failure rate on the aircraft may not have changed, but the wholesale 

demand rate can spike up suddenly due to lack of repair capability at the I level. It is this 

unanticipated spike in wholesale demand, above the level of normal demand, that often 

leads to aircraft being unavailable for use due to lack of “A” condition parts.  For this 

reason, the author chose wholesale demand as the variable to analyze using CUSUM and 

EWMA.   

While the 3M system records BCMs, the supply system operates primarily on 

requisition documents as a measure of wholesale demand.  The timing of BCMs and 

supply requisitions was examined and it was found that with few exceptions, they are 

very close in timing.  Thus, one may use either the wholesale requisition data or the BCM 

data as representative of the total demand on the wholesale supply system.  Since the 



 8

author was primarily concerned with wholesale demand in this analysis, and historical 

BCM data is much easier to obtain than historical wholesale demand data, BCMs were 

chosen as the data element to be analyzed. 

D.  CHAPTER SUMMARY 

Maintenance of Naval Aircraft occurs around the globe in a complex three-level 

maintenance system.  Data is recorded tracking the maintenance steps involved from 

removal of a component from the aircraft all the way through its repair and reinstallation.  

Data available in the fleet 3M system for BCMs is closely mirrored by requisition data 

available in the supply system and is representative of wholesale demand.  When 

wholesale demand spikes and the supply system cannot provide sufficient repaired parts, 

aircraft availability can fall rapidly.  Thus BCM data will be used in this paper for 

analysis of the research questions posed by this thesis.   The author will analyze the use 

of CUSUM and EWMA techniques to detect changes in underlying demand distributions   
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III. RELATED RESEARCH  

A. INTRODUCTION 

Demand for spare parts in aviation is a complex and often studied field.    When 

one examines research on the analysis and prediction of usage rates of spare parts in 

aviation, what becomes clear is that there is no consensus on a best method.  While 

Varghese and Rossetti (2008) reported “no statistical difference” in techniques, Ghobbar 

and Friend (2003), determined that weighted moving averages were superior.   Other 

researchers reached yet different conclusions.  Clearly it is hard to predict demand for 

aviation spares and important that demand trends be monitored for change. The author 

will discuss the results of the literature review and the recommendations of a number of 

researchers in the field in more depth in the following paragraphs with rationale for the 

direction and focus of this thesis. 

B. SUMMARY OF LITERATURE REVIEW 

A number of papers discussing the issue of supply support in aviation and similar 

systems were reviewed.   It is a very complex field and while it has been often studied, 

there appears to be little consensus on the best methodology to use.  Demand in the 

aviation field is often not steady or easily predictable.  This may be caused by 

deployment cycles, high time cycles where items are removed before failure when they 

reach a certain age, changes in operational environment or tempo, or a number of other 

factors.  There may be long periods of low or no demand for an item followed by periods 

of high demand. As discussed by Williams (1982) in “Reorder Levels for Lumpy 

Demand,” classical methods may not work well due to demand being “either zero or a 

large lump.”  Croston (1972) determined that “demand for constant quantities at fixed 

intervals may generate stock levels of up to double the quantity really needed.”  Clearly, 

the demand for aviation spares can be highly variable and very difficult to predict.   

Some researchers found no statistical differences in techniques used.  Varghese 

and Rossetti (2008) in “A Parametric Bootstrapping Approach to Forecast Interrmittent 

Demand” evaluated  five different forecasting techniques including Croston (0.1), 
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Croston (0.2), Syntetos (0.1), Syntetos (0.2) and MC ARTA.  They found that “there is 

no statistical difference between the best forecasting techniques and the other forecasting 

techniques.”   

Yet other researchers did report “best” methods.  Eaves and Kingsman (2004) 

determined that the “best forecasting method for a spare parts inventory is deemed to be 

the approximation method.”  Ghobbar and Friend (2003), in their paper “Evaluation of 

forecasting methods for intermittent parts demand in the field of aviation: a predictive 

model,” examined the results of 13 different forecasting methods.   These methods 

included additive winter, multiplicative winter, seasonal regression model, component 

service life, weighted calculation of demand rates, Croston, single exponential 

smoothing, exponentially weighted moving average, trend adjusted exponential 

smoothing, weighted moving averages, double exponential smoothing, and adaptive 

response rate single exponential smoothing.  Their research results “confirm the 

continued superiority of the weighted moving average…”  Gardner (1985) in 

“Exponential Smoothing: The State of the Art,” states that “the empirical evidence 

favours Holt’s models for trends…”   In discussions with managers at Naval Inventory 

Control Point (NAVICP) from Philadelphia, PA, the author was informed that moving 

averages were used most often to predict future demand within the naval air forces.    

It is therefore very important to monitor demand for spares as there is great 

variability in the demand and it is hard to predict changes.  Gardner (1985), discussed 

CUSUM as a methodology to monitor forecast errors.  Hawkins and Olwell (1997) 

discussed in depth the use of CUSUM to monitor process changes.  Neubauer (1997) 

evaluated EWMA methods to detect shifts in processes and provided a very limited 

comparison to CUSUM charts. While CUSUM and EWMA control chart tools are 

readily available in Minitab, the author found no evidence of a direct comparison of these 

tools to monitor changes in demand for aviation spares.  With the high variability in 

demand patterns, lack of consistent predictive tools, and the criticality of spares 

availability for naval aviation, the author decided to compare and evaluate CUSUM and 

EWMA control charts as a method to detect changes in demand for aviation spares.   
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C.  CHAPTER SUMMARY 

Estimating demand for aviation spares is a complex and controversial field.  The 

demand patterns are often extremely variable and the cost of the items can be very high.  

A large amount of research has been performed over many years, yet the conclusions are 

mixed and there is no consensus on a “best” method to determine changes in demand. 

Since the “best” method for forecasting may be situation dependent, there will always be 

a need to monitor demand data for changes in underlying demand distributions.  Thus, 

this thesis will analyze the use of EWMA and CUSUM control charts in the detection of 

the underlying demand distribution changes.   
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IV. OVERVIEW OF CUSUM AND EWMA CHARTING  

A. INTRODUCTION 

In all processes, there is variation present and aircraft maintenance is no 

exception.    For managers charged with ensuring that there are adequate spare parts to 

repair aircraft, it is important to know if changes in demand are just a part of normal 

variability in the maintenance, or if the changes represent something different, namely a 

new higher demand pattern that could potentially use all available spares before they 

could be replenished.  Additionally, the manager is also concerned if the change 

represents a true lower demand pattern such that resources could be shifted away from 

repairing components with reduced demand and towards more critical items.   As 

discussed in Chapter III, many different methodologies have been used to analyze and 

forecast the demand for aviation spares.   Chapter III concluded with the objective to 

compare CUSUM control charts to EWMA control charts as a method to detect changes 

in underlying demand trends for aviation spares.  Thus, in this chapter, the CUSUM and 

EWMA control chart techniques will be discussed including the theory and possible 

application to the determination of changes to the distribution of spares demand.     The 

information on CUSUM charting contained within this chapter was largely obtained from 

the book “Cumulative Sum Charts and Charting for Quality Improvement” (Hawkins & 

Olwell, 1997).  The information on EWMA charting contained within this chapter was 

largely obtained from the article “The EWMA control chart: properties and comparison 

with other quality-control procedures by computer simulation” (Neubauer, 1997).  

B. UNDERLYING CUSUM THEORY 

1. Sources of Variability 

Sources of variation in processes can be categorized as “common and special”.  

Special causes are those for which a source can be identified.  Identifying and removing 

special causes improves the process quality.  What is left after the special causes are all 

removed is the “purely random variability,” which is called “common cause variability” 

(Hawkins & Olwell, 1997).    Common cause variability is inherent in the nature of the 
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process even while it is in control and cannot be improved without fundamental process 

change.  Since the author is concerned with processes that are changing, this paper will 

focus only on special variability and not common cause variability.    

There are two types of special causes for variability:  transient and persistent 

(Hawkins & Olwell, 1997).   Transient causes appear for a period of time, but then they 

go away.  They may appear at a later time, or not.  Persistent causes remain until detected 

and corrected.   These two types of special causes leave different evidence and, thus, are 

best detected using different methods.   CUSUM is designed to detect the persistent 

changes even if very small.   

2. Detecting Transient Special Variability  

Shewhart Xbar and R charts are widely used to detect transient special cause 

variability.   Figure 1 shows an example of an XBar chart.   An Upper Control Limit 

(UCL) and Lower Control Limit (LCL) bound the Center Line (CL).  The Center Line 

represents the true in control mean of the process and the UCL and LCL are positioned 

three standard errors above and below the CL, respectively.  
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Figure 1.   Shewhart Xbar chart from Hawkins and Olwell, 1997 

The XBar chart monitors the mean and a similar chart called an R chart monitors 

the range of the sample readings.  As long as the readings remain within the range 

between the LCL and UCL, the process is considered within control, as stated in 

Cumulative Sum Charts and Charting for Quality Improvement: 

The Shewart chart has a beautiful simplicity to it.  It may also be as 
valuable for what it prevents as for what it motivates.  As long as the 
points plot inside the control limits, no action is taken to alter the process.  
This rule can stop much unproductive tinkering that could take a process 
from a good state into a bad one.  The control limits are placed sufficiently 
far from the center line that very few samples should plot outside them if 
the process remains in its in-control distribution.  This means that when 
the control chart does give a signal, it should be taken very seriously.  
These attractions of the Shewart chart should not blind one to a serious 
limitation.  It has no memory, and so although it is very effective for 
detecting isolated special causes that lead to large shifts in the data, it is 
not very effective in detecting more moderate shifts, even if these more 
moderate shifts persist. (Hawkins & Olwell, 1997) 
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The quote above discussing what control charting prevents is very important.  In 

the author’s thirty plus years of experience within Naval Aviation, many times scarce 

resources are diverted chasing down data point outliers or, as those within the business 

call them, “wild goose chases.”  Without the proper tools, managers many times don’t 

know what is important and what should be left alone.   Control charting allows a 

manager to know what is acceptable to ignore and allows focusing on the more critical 

issues.  

Figure 2 shows a chart very similar to Figure 1, except the final ten readings have 

been increased by 0.03mm.  It is very hard with the eye to detect that anything has 

changed in this chart, and there is no alarm or trigger.    

 

 

Figure 2.   Shewhart Xbar chart with the last ten readings increased by 0.03 mm from 
Hawkins and Olwell, 1997 

The reader can see that a Shewhart chart is not very effective in detecting small 

persistent changes in mean.  Many attempts have been made to correct this problem, 

including adding “run rules” to the detection scheme.  An example of a run rule is that 

“the process is out of control if two out of three successive points plot more than two 
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standard deviations from the center line.” (Hawkins & Olwell, 1997)   A more effective 

method is to use CUSUM charting.   One of the simpler explanations of CUSUM 

charting is contained in the document obtained from the Minitab corporate Web site 

“Using CUSUM Charts to Detect Small Process Shifts” (Bower) as follows: 

Though CUSUM charts have been well researched and developed, it is 
true that many quality practitioners do not use them, even though there 
may be justifiable reasons to make use of this technique for their process. 
Possibly this may be due to a lack of instruction on CUSUM charts in 
many classes on SPC. In practice, however, I find that many of these same 
quality practitioners play the game of golf; hence they are in fact already 
well versed in the technique behind CUSUM charts. In essence, for each 
hole in a round of golf, there are a specified number of times in which one 
should strike the ball, until it eventually drops into the hole. For example, 
on a par 4, if you strike the ball 4 times and it falls into the cup, then you 
held par. If you were able to do this task with only three shots (a “birdie”) 
then you are "1 under par" hence your cumulative sum is -1. This is 
continued throughout the course, the ultimate winner therefore having the 
lowest CUSUM. Picture a golfer who is holding par for the first 13 holes, 
then suddenly hits form and has five successive birdies towards the end of 
the round. The final CUSUM is therefore –5, though from viewing a 
CUSUM chart it would be clear to see when the “process” shifted. 

In essence, the CUSUM is just the summation of each point in the process with 

the “par” or mean subtracted.    While adding a stroke to a single hole may not make 

much of a difference to the golf game, persistently adding this stroke to each hole makes 

a large difference.  This is precisely what CUSUM charting is designed to detect.   

The simple CUSUM as discussed by Hawkins and Olwell (1997) is defined in 

Equation 1 as: 

 1
( )

n

n j
j

C X μ
=

= −∑
 

Equation 1 - Basic CUSUM Equation 
 

jX is the value of the jth reading, μ is the in-control mean, and the difference between 

the two is summed from 1j = to j n= .  The value of nC is then plotted against n  and 

this forms the CUSUM chart.   
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If this value is plotted at each point in the data set for the values in Figure 1, the chart in 

Figure 3 is obtained. 

 
Figure 3.     CUSUM of Original Diameters from Figure IV-1 from Hawkins and Olwell, 

1997 

Figure 3 shows a drifting randomness with no real trend in the data.  From this 

chart, the reader could conclude that no shift in mean had occurred.  In Figure 4, the data 

from Figure 2 with the small shift in mean is plotted on a CUSUM chart.  It becomes 

very apparent on this chart that something significant has shifted around the sixtieth data 

point as the reader will note a steep shift of the CUSUM line towards the top right corner 

of the chart.  
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Figure 4.   CUSUM of Shifted Diameters from Figure IV-2 from Hawkins and Olwell, 
1997 

 In order to know when a CUSUM chart signals an out of control condition, a V-

mask tool is sometimes used.  This is called V-mask because of the shape of the mask as 

seen in Figure 5 where the process has been out of control since observation 70.   

 

Figure 5.   CUSUM V-Mask from Figure 1.8 from Hawkins and Olwell, 1997 
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The shape and size of the mask is derived from two parameters, h and k.  As 

discussed by Hawkins and Olwell (1997):  

The mask has a flat front (right) end of height 2h and two legs of slope k 
and –k.   As each new point is added to the CUSUM, align the center of 
the front edge with the point just plotted, and see whether all previous 
points are contained in the mask.  If they are, then you conclude that the 
process is still in control – that its mean has not shifted.  If any preceding 
point projects outside the mask, then you conclude that the mean has 
shifted.   

The first parameter, k, tunes the CUSUM to react to a shift of a certain size.  The second 

parameter, h, sets the average run length while in control.   

A more concise form of the CUSUM chart is the Decision Interval (DI) form that 

is used within the Minitab software.   This is equivalent to the V-mask version of the 

CUSUM with a slope k and leg height h.  (For a complete discussion of out-of-control 

signals and the derivation of the associated mathematics, the reader is encouraged to 

consult Chapter 1 of Cumulative Sum Charts and Charting for Quality Improvement 

(Hawkins & Olwell, 1997).  An example of a DI CUSUM chart is shown in Figure 6.   

An examination of this chart shows that the process clearly shifted around the sixtieth 

point.   

 

 
Figure 6.   CUSUM Plot of Shifted Diameters from Figure 3 Hawkins and Olwell, 1997 
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The DI form of the CUSUM to test for an upward shift in mean is set up as follows as 

discussed by Hawkins and Olwell (1997): 

 0 0C+ =  
 1max(0, )n n nC C X kμ+ +

−= + − −  

This produces an alarm showing an upward shift in mean if nC h+ .  Similarly, the DI 

form of the CUSUM to test for a downward shift in mean is set up as follows: 

0 0C− =  
 1min(0, )n n nC C X kμ− −

−= + − +  

This produces an alarm showing an upward shift in mean if nC h− −≺ .    

Determining the correct values of h and k to use is essential in creating a CUSUM 

system that will set off an alarm quickly when the mean has shifted without excessive 

false alarms during in control operations.   The average time between alarms is termed 

the Average Run Length (ARL).  Two ARLs are generally used, one for in-control and 

one for out-of-control at a specified level.  The ARL is a function of h and k and the 

underlying distribution (in-control or out-of-control) of data.   The reader is encouraged 

to refer to Cumulative Sum Charts and Charting for Quality Improvement (Hawkins & 

Olwell, 1997) for a complete discussion on the methodology of best choosing these 

variables.   

A program that operates under Windows called Anygeth.exe is also available for 

download at http://www.stat.umn.edu/cusum/software.htm.  It will generate h and k 

values for given values of ARL, in-control means, and out of-control means.  While h and 

k are reasonably easy to calculate for a normal distribution, they are more complex for 

Poisson and other distributions.  The use of the software greatly simplifies the task.    

Minitab, a commercially available statistics program will develop both V-mask and DI 

CUSUM charts using default values of h and k, or the user may choose to input their own 

values obtained from Anygeth.exe.  The default Minitab values are often inappropriate, 

and the reader is cautioned against them. 
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C. UNDERLYING EWMA THEORY  

The use of control chart was first published in the article “Control chart tests 

based on geometric moving averages” (Roberts, 1959).  While Shewhart charts only 

consider the most recent data point in testing to determine if statistical limits have been 

exceeded, EWMA charts consider all previous points using a weighing factor that makes 

the outcome more influenced by recent points.   As described by Neubauer (1997):   

In brief, after multiplication by a weighting factor w, the current 
measurement is added to the sum of all former measurements, which is 
weighted with (1 - w). Thus, at each time t (t = 1,2,... ), the test statistic zt 
[= w t + (1 - w)zt-1], with w ]0;1], can be obtained.2 The computed zt 
values are displayed on a control chart over the course of time. Because 
the mean of the n control observations per run is 
used, this control chart is called the EWMA- chart. Another way of 
expressing this is:  
 

 

with the first value z0
 in this sum generally being set to the mean of former 

observations. This smoothing process means that the contribution of a 
value to the test statistic decays exponentially by time or by the number of 
new observations, with the speed of decay being adjustable by the 
weighting factor.   

The limits for warning and action of the EWMA chart differ from those of 
a Shewhart chart and have to be computed separately, as shown later. The 
EWMA control chart differs from the similar Cusum chart by using the 
additional weighting factor, which allows the adjustment of shift 
sensitivity. (Setting the EWMA weighting factor w = 1 yields a Shewhart 
control chart.) Because of this flexibility, the EWMA chart has drawn 
increasing attention in industrial quality-control practice during the past 
few years, as shown by the number of publications in the Journal of 
Quality Technology since 1989. 

A complete description of the methodology to choose the control limits and the 

weighing factor is described in Chapter V, Section 4 of this thesis.  The reader is 

encouraged to refer to “The EWMA control chart: properties and comparison with other 
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quality-control procedures by computer simulation” (Neubauer, 1997), for a more 

complete description of the theory and use of EWMA control charts.   

D. APPLICATION TO AIRCRAFT MAINTENANCE AND FORECASTING 

Changes in demand for aircraft repair parts can create two conditions that are not 

desirable.  If the demand for parts increases and supply stocks are not replenished in an 

expeditious manner, aircraft may not be available to fly required missions due to lack of 

repair parts.  Conversely, if demand falls for parts, scarce resources may be expended 

repairing more parts than are needed. If modern techniques can be shown to detect 

changes in demand patterns quickly enough without excessive false alarms, managers 

charged with keeping the right parts available to the fleet could have a new tool to more 

efficiently and effectively support Naval Aviation.  

E.  CHAPTER SUMMARY 

Maintenance of naval aircraft is subject to variability as is any process.   There are 

multiple types of variability and the tools to detect them differ.  While Shewhart Xbar 

and R charts excel at detecting transient special cause variability, they have definite 

limitations.   With no memory, they are not very effective in detecting small to medium 

size shifts in the process even if these shifts persist.  CUSUM and EWMA charts excel at 

detecting persistent shifts even if the shifts are relatively small; in fact, among all 

methods with the same in-control ARL they are probably optimal to detect an out-of-

control state most quickly.    The DI CUSUM chart provides a concise method of 

implementing the CUSUM technique and can be developed quickly using commercially 

available software such as Minitab. Accurate determination of the k and h variables is 

important to ensure that the CUSUM chart sets off alarms when an unwanted shift occurs 

while remaining relatively free of false alarms.  EWMA control charts can also be 

developed quickly using Minitab.  Determination of the weighing factor and control 

limits is important in obtaining the correct sensitivity with a reasonable level of false 

alarms.  Due to their ability to detect changes in underlying data distributions, CUSUM 

and EWMA can improve the ability of parts managers to detect persistent shifts in 

demand patterns for spare parts.    
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V. RESEARCH ANALYSIS  

A. INTRODUCTION 

The research was performed in two phases: validation of methodologies and 

analysis of components.  To first validate the analysis methodologies, the data set for 

Component Z was analyzed using CUSUM and EWMA control charts.  The data set for 

Component Z was formed by combining two data sets each comprised of 500 data points.  

The first 500 data points followed a Poisson distribution with a mean of 0.5, and the 

second 500 data points followed a Poisson distribution with a mean of 0.7.   This 

computer generated data set was created to follow the type of variation, a persistent shift 

in mean, for which a CUSUM control chart is most exactly tailored to detect.  By 

comparing CUSUM and EWMA charts generated against a data set with known 

characteristics, the methodologies were validated as the resulting control charts were 

reflective of the characteristics of the data set and the designed ARL.     

Next, CUSUM and EWMA control charts were generated for the remaining four 

real data sets and the results were compared to each other relative to the known 

variability in the data sets.  Two characteristics of the control charts were evaluated: 

1. How effective were each of the control chart at detecting real shifts with 
limited numbers of false alarms? 

2. How efficient were each of the control charts as gauged by the amount of 
effort it required to set up and produce each chart?   

B. ANALYSIS TECHNIQUES USED 

1. Data Sets Analyzed 

In order to compare the effectiveness of the CUSUM and EWMA methodologies 

to detect changes in underlying distributions, five sample data sets were chosen for 

analysis, namely data sets for Components “Z”, “1”, “14”, “16”, and “23.”  The data set 

for Component “Z” was created with a known distribution and change in distribution 

(Poisson with a mean of 0.5 for the first 500 cases, and then with a mean of 0.7 for 

subsequent cases), so that the change in distribution was matched the parameters for 
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detection by CUSUM.  Four real data sets containing the demand figures for actual naval 

components in operation in the fleet were also examined where the variability in demand 

ranged from very low to extreme.  (The actual names and associated aircraft for these 

four real components were not included in this document in order to safeguard sensitive 

failure information.)  These four data sets were chosen as representative of the range of 

variability that occurs naturally during fleet operations.  By using a designed data set and 

four real data sets spanning the range of variability as seen in the fleet, the outcome of the 

analysis could be applicable to a wide range of systems in operation in the Navy.    

The four real data sets were extracted from the 3M data system and were chosen 

to be representative of the range of variability seen within normal operations in the fleet.   

On one end of the spectrum, the data set from Component 1 displayed very erratic 

behavior with sharp “dog legs’ evident in the demand for spares as seen in Figure 7. 

 

Figure 7.    Cumulative BCMs for Component 1 

(The term “dog leg” is often used in describing data with sharp bends as it is 

similar to the shape of a dog’s rear leg.)  On the other end of the spectrum, the data set 

from Component 23 displayed relatively stable behavior with minor levels of variability 

in the demand for spares.  In between, two data sets from Components 14 and 16 were  
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chosen with intermediate levels of variability.   It should be noted that none of the real 

data sets analyzed displayed the “classic” persistent shift in mean for which CUSUM is 

optimally designed. 

2. Method of Analysis 
For the created data set for Component Z, CUSUM and EWMA charts were 

generated using Minitab.  Refinements were made to the methodology until the outputs of 

the charts were reflective of the data set itself with false alarms in the range predicted by 

the in-control ARL settings and frequent alarms soon after the mean shift at point 501. 

For each of the four real datasets that were chosen using the methodology 

described above, three charts were developed: 

The first chart displays the cumulative BCMs by week for the component over the 

period of analysis and was generated using Excel 2007.  This provided a visual depiction 

of the demand variability over time.  

The second chart displays a CUSUM chart as generated by Minitab for each 

component using h and k values as determined using Anygeth.exe.  For the CUSUM 

charts, the in-control ARL was set to 100 weeks.  As such, one would expect to see about 

one false alarm every 100 weeks.   

The third chart displays a EWMA control chart for the data set up to have an ARL 

of 100 weeks.  Similarly, one would expect to see one false alarm every 100 weeks.   

By examining the CUSUM and the EWMA chart, and comparing them to the 

shifts in the cumulative BCM chart, the author will assess the efficiency and effectiveness 

of each method relative to its ability to determining shifts in demand without excessive 

false alarms being present. 

3. Validation of CUSUM Methodology and Modification of Variables 
between Anygeth.exe and Minitab 

When attempting the CUSUM validation phase of this effort against the 

Component Z sample data set using h and k values obtained from Anygeth.exe within the 

Minitab program, several problems arose.  This section will discuss the steps necessary to 

successfully integrate the two programs. 
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Before one can determine the parameters of the CUSUM scheme, one must first 

select an in-control ARL.  Recall that this specifies the average number of time periods 

until one gets a false alarm while in control.  Longer ARLs imply fewer false alarms, but 

can result in a longer delay until a true alarm is signaled.  The second parameter needed is 

to select the out-of-control mean.   This is set based on the context of the problem, and is 

generally based upon the size of a change that starts to have serious practical effects.  

Larger departures are more robust against model misspecification (i.e., the distribution is 

not exactly as assumed).   

Using anygeth.exe, one can find the values of h and k that are tuned for the size of 

the departure desired.   A screen shot of the dialog for the example with the Z Component 

showing the determination of the parameters for the CUSUM for a Poisson distribution 

with mean shift from 0.5 to 0.7 and an ARL of 100 is displayed in Figure 8.  

 

 

Figure 8.    Dialog from Anygeth.exe  
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Minitab and anygeth.exe use slightly different parameterizations, so one must 

convert between them.  The following instructions should be followed carefully.   

1. Calculate h and k using Anygeth.exe for the desired ARL and out of control 

state.  See Figure 8 for an example. From Figure 8 we obtain h = 4.4688 and k 

= 0.5940. 

2. Determine the value of k̂ = k – in-control-mean- and insert into the CUSUM 

Plan k field.  Do not use the unadjusted value of k from anygeth.exe.  For our 

example, we get k̂  = 0.5940 – 0.5 = .0940.  See Figure 9.   

3. Insert the value of h into the CUSUM Plan h field.  Here you do use the 

unadjusted value.  See Figure 9. 

4. Change the value of the Standard Deviation to 1.0.  See Figure 10. 

5. Insert the value of the in-control mean into the CUSUM Target field. See 

Figure 11.   

6. After entering all information above, run the CUSUM by clicking “OK”. See 

Figure 11. 

 

Figure 9.   CUSUM  Chart – Options Dialog Box – Plan/Type Tab  
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Figure 10.   CUSUM  Chart – Options – Parameters Tab  

 

Figure 11.    CUSUM Chart Dialog Box  

The CUSUM chart generated using the above values of h and k as determined by 

Anygeth.exe, 4.4688 and 0.594, respectively, is shown in Figure 12.  The chart produced 

alarms at:  29, 53, 167, 185, 221, 284, 329, 527, 553, 566, 584, 637, 691, 755, 771, 797, 

828, 843, 867, 908, 931, 974, and 996.  This equates to seven false alarms during the in-

control period which is well within normal variation for an ARL of 100 with 500 data 
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points in the in-control region in which five false alarms would be the average number 

expected.  The CUSUM chart accurately detected the real shift in mean first at point 527 

and provided frequent alarms afterward providing validation of the methodology 

employed to set up Minitab using Anygeth.exe.   Note that Minitab was set to reset after 

each alarm.  The output of this chart against the known data set for Component Z 

provided a validation of the methodology used to create the chart using Anygeth.exe and 

Minitab.   

  

Figure 12.   CUSUM Chart of Component Z with ARL set to 100 

4. Validation of Methodology for EWMA  

In order to accurately compare EWMA and CUSUM techniques, they must be set 

up on a “level playing field.”  Both must be designed with the same ARL, or the results 

cannot be compared fairly.  In this section, the methodology to set up the Minitab 

EWMA control chart function to have an ARL of 100 will be described and validated 

against the Component Z data set.    

Neubauer (1997) in the article “The EWMA control chart: properties and 

comparison with other quality-control procedures by computer simulation,” described a 

graphical method for determining the ARL for an EWMA control chart.   As seen in 
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Figure 13, one can obtain the weighting factor “w” as a function of the desired shift 

sensitivity of the chart.  For a shift of one standard deviation, a weighing factor of 0.15 

can be obtained from the chart.    

 

 

Figure 13.   Optimal w for EWMA charts according to the shift d from Neubauer 1997   

For a desired ARL of 100 and a weighting factor of 0.15, one can obtain the limit q value 

of 2.3 as seen in Figure 14.       

 

Figure 14.   Determining the limit q of the EWMA chart after selection of w and the 
nominal ARL from Neubauer 1997   
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In order to set up Minitab to run an EWMA control chart with an ARL of 100, all 

that is required is to: enter the value of w = 0.15 obtained from Figure 13 in the “Weight 

of EWMA” field as seen in Figure 15; and to enter the limit q value of 2.3 obtained in 

Figure 14 in the “Display control limits at” dialogue box as seen in Figure 16.  

Additionally, if the in-control mean is known, as it is for Component Z, then more 

accurate results are obtained if that value is entered into the “Mean” field on the EWMA 

Chart – Options dialogue box under the “Parameters” tab.   Otherwise, Minitab will 

calculate a mean for the entire data set.  

 

 

Figure 15.   Minitab EWMA Chart Dialogue Box   



 34

 

Figure 16.   Minitab EWMA Chart - Options Dialogue Box   

Unlike CUSUM charts, where variables have to be recalculated for every chart 

requiring a great deal of user knowledge and assistance from a computer program, the 

EWMA chart has the distinct advantage that the set up is a one-time event using easily 

understood graphical techniques.  For a given in-control ARL, the EWMA has the same 

parameters for all datasets regardless of distribution due in part to the central limit 

theorem.  

As a validation of this methodology for determining the variables to set up 

Minitab to run EWMA control charts, the data set for Component Z was run in Minitab.  

Figure 17 displays the output. 
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Figure 17.   EWMA Chart for Component Z   

Minitab displayed alarms at points 185, 189, 554, 566, 567, 568, 570, 584, 640, 

642, 643, 691, 773, 798, 799, 800, 801, 802, 830, 843, 844, 845, 846, 848, 849, 868, 869, 

870, 978, 997, and 998.   In this case, there were two false alarms during the in-control 

period with an expected average of five false alarms with an ARL of 100 across 500 in-

control data points.  This is also within normal variation.  The EWMA chart provided the 

first valid alarm at point 554 (27 points later than the CUSUM chart) and then alarmed 

consistently after that during the out-of-control region.  This is exactly the behavior that 

would be expected from a valid EWMA chart on the data set from Component Z.  Thus 

the process described in this section produces a valid EWMA chart when run against a 

data set with known characteristics.   

C. COMPONENT ANALYSIS 

With the methodology validated to create CUSUM and EWMA charts using 

Minitab and Anygeth.exe, charts were prepared for each of the four real components and 

the results compared and analyzed as follows. 
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1. Results of Analysis for Component 1 

Figure 18 displays the cumulative BCMs for Component 1 on the y axis plotted 

against weeks on the x axis.   

 

Figure 18.    Cumulative BCMs for Component 1 

The reader will note a relatively stable demand pattern until approximately time 

period 120 when the demand for Component 1 was subject to a very dramatic increase.  

After that, the demand returned to a relatively stable pattern until around week 180 when 

it spiked again only to level out again around week 190.   These sharp bends in demand 

patterns are often described as “dog legs” as discussed earlier.  Even during the relatively 

stable periods, there were extended plateaus or periods of zero demand.   

The underlying data (BCMs/week) has a mean of 0.311 with a standard deviation 

of 1.049.   A Poisson distribution for a data set with this mean should have a standard 

deviation of 0.558 indicating that this entire distribution does not follow a Poisson 

distribution closely.   However for the period during weeks 1-119, the mean is 0.12 and 

the standard deviation is 0.40.  A Poisson distribution would have an ideal standard 

deviation of 0.36 that is reasonably close to the real value of 0.40 indicating that this data 

follows a Poisson distribution relatively closely during that time frame and that the 

Poisson model can be used for analysis. 
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Figure 19 displays the CUSUM chart for Component 1 using a value of the mean 

of 0.12, which represents the average number of BCMs for weeks 1–119, a period in 

which the demand was reasonably stable.  The in-control ARL was set at 103.  

Anygeth.exe provided values of k and h of 0.16 and 2.4 respectively.  After adjustment, 

k̂ was set at 0.04.   
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Figure 19.   CUSUM Chart for Component 1  

There were alarms at points 3, 33, 89, 122, 124, 126, 128, 129, 135, 180, and 185.  

The alarms coincide with the appearance of “spikes” and “plateaus” in the demand as 

seen in Figure 18.      

Figure 20 displays the EWMA chart for Component 1 with an ARL of 100, 

weight of 0.15, and control limits at 2.3 standard deviations.    
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Figure 20.   EWMA Chart for Component 1 

The EWMA chart provided alarms at points 3, 29, 30, 31, 32, 33, 34, 35, 36, 66, 

67, 68, 69, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 

138, 139, 140, 141, 142, 180, 181, 183, 184, 185, and 186. There are corresponding 

spikes and plateaus in the demand patterns that coincide with these alarms.  

Observations:  For components with relatively stable demand patterns with 

intermittent large spikes, CUSUM and EWMA are effective in detecting the spikes 

without excessive false alarms.  The EWMA chart detected a movement down in demand 

at week 66 that was missed by the CUSUM chart.  However, the reader will notice that 

the CUSUM chart was near alarm at that time.  Overall, both chart types appeared 

effective in detecting shifts in demand in Component 1.  The EWMA methodology 

requires less overhead and expertise than CUSUM for these types of components and 

may be a more efficient choice for monitoring these types of components.   

2. Results of Analysis for Component 16 

Figure 21 displays the cumulative BCMs for Component 16 on the y axis plotted 

against weeks on the x axis.   
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Figure 21.    Cumulative BCMs for Component 16 

The reader will note that the pattern is more stable than Component 1, but that it 

still contains spikes and plateaus in the demand pattern.   The underlying data 

(BCMs/week) has a mean of 0.244 with a standard deviation of 0.557. A Poisson 

distribution for a data set with this mean should have a standard deviation of 0.494 

indicating that this distribution is close, but does not exactly follow a Poisson 

distribution.  

Figure 22 displays the CUSUM chart for Component 16 using  values of h and k 

as determined by Anygeth.exe with an in-control mean of 0.244, an out-of-control mean 

of 0.366,   k̂  = 0.03, h = 3.4 and in-control ARL = 103.   
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Figure 22.   CUSUM Chart for Component 16 

There were four alarm signals at points 34, 74, 147, and 209.  With an ARL of 103, these 

may just be usual variation.   

Figure 23 displays the EWMA chart for Component 16 with an ARL of 100, 

weight of 0.15, and control limits at 2.3 standard deviations.  
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Figure 23.   EWMA Chart for Component 16 



 41

In this chart, there are four groups of alarm signals, with three roughly at the same places 

as three of the signals on the CUSUM chart.   The signals were at points 32, 34, 35, 74, 

75, 77, 79, 80, 86, 118, 120, 147 and 151.  The EWMA chart signaled an alarm around 

data point 120, where the CUSUM did not quite signal, while the CUSUM chart signaled 

an alarm at the very end of the data. 

Observations:  Component 16 has a demand pattern that consists of several 

intermediate level spikes followed by plateaus.  The alarms of each tool did correspond to 

periods of spikes and plateaus in the data.  The EWMA methodology requires less set up 

time than CUSUM for these types of components and may be a more efficient choice for 

monitoring these types of components.   

3. Results of Analysis for Component 14 

Figure 24 displays the cumulative BCMs on the y axis versus weeks on the x axis 

for Component 14.  

 

Figure 24.    Cumulative BCMs for Component 14 

The reader may note that the pattern is similar to Component 16, and contains 

spikes and plateaus in the demand pattern.   This data sample has a mean of 0.282 with a 

standard deviation of 0.592. A Poisson distribution for a data set with this mean should 
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have a standard deviation of 0.531 indicating that this distribution indicating that this 

distribution while closer to a Poisson than Component 1, does not exactly follow a 

Poisson distribution. 

Figure 25 displays the CUSUM chart for Component 14 using a k̂  hat value of 

0.0657 and an h value of 3.53 as determined using Anygeth.exe with an ARL of 100.7.    

The in-control mean was 0.282 and the out-of-control mean was 0.423.   There were 

alarms at points 26, 29, 78, 131, 137 and 197. 

 

Figure 25.     CUSUM Chart for Component 14 

Figure 26 displays the EWMA for Component 14 with an ARL of 100, weight of 

0.15, and control limits at 2.3 standard deviations.    
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Figure 26.   EWMA Chart for Component 14 

There were alarms in three groups at points 28, 29, 30, 31, 32, 33, 34, 36, 43, 136, 137, 

144, 145,146, 197, 198, 199, 203, 205, 208 and 209.  The positive alarms were nearly the 

same location as the CUSUM alarms but slightly slower in two of three cases.  The 

EWMA chart did not produce alarms in the negative direction even though it came very 

close three times at the same places that the CUSUM chart alarmed.   

Observations:  Component 14, much like Component 16 has a demand pattern 

that consists of several intermediate level spikes followed by plateaus.  Each tool 

triggered at the location of spikes or plateaus in the demand patterns.  CUSUM was 

slightly faster and in this case appeared slightly more sensitive to the negative alarms 

after plateau periods.  The EWMA methodology requires less overhead than CUSUM for 

these types of components and may be a more efficient choice for monitoring these types 

of components.   

4. Results of Analysis for Component 23 

Figure 27 displays the cumulative BCMs plotted on the y axis versus weeks on 

the x axis for Component 23.  
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Figure 27.    Cumulative BCMs for Component 23 

The reader will note that the demand pattern is more stable than the other 

components.   This component was chosen to represent the stable end of the variability 

spectrum.   This data sample has a mean of 0.65 with a standard deviation of 0.84.   A 

Poisson distribution for a data set with this mean should have a standard deviation of 0.81 

indicating that this distribution is closer to a Poisson distribution than the other 

components discussed.     

Figure 28 displays the CUSUM chart for Component 23 using a k̂  hat value of 

0.16, an h value of 4.43 as determined using Anygeth.exe with an ARL of 100.  The in-

control mean was 0.65 and the out-of-control mean was 1.0.        
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Figure 28.   CUSUM Chart for Component 23 

There is a single alarm signal at point 48.   With an ARL of 100 across 209 data points, 

this alarm is mostly likely just due to normal variation.   

Figure 29 displays the EWMA for Component 23 with an ARL of 100, weight of 

0.15, and control limits at 2.3 standard deviations.    
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Figure 29.   EWMA Chart for Component 23 



 46

There are two alarms at points 49 and 50.  With an ARL of 100, this again is probably 

just normal variation.    

Observations:  Both methods picked up the small spike in demand around week 

49 with CUSUM alarming one week earlier.   Of all of the components studied, this one 

had the least activity in alarms, which is consistent with an in-control process with very 

little variation.  While both the CUSUM and EWMA methods were effective for this type 

of component, the EWMA method was more efficient.   

D. GENERALIZATION OF FINDINGS AND RECOMMENDATIONS 

Both the CUSUM and the EWMA methodologies were very capable of detecting 

spikes and plateaus in the demand patterns when correctly set up to analyze the data.  In 

general, CUSUM provides alarms slightly faster than EWMA.  However, the CUSUM 

technique required a unique set up for each component requiring user expertise and the 

use of a computer program to generate required variables.  EWMA has the advantage of a 

single set up for all components with the same ARL, using an easily understood graphical 

approach.  Due to the central limit theorem, the EWMA method is relatively insensitive 

to the underlying distribution of the data while the CUSUM methodology does require 

knowledge of the underlying distribution.  For most applications monitoring aircraft 

component spares usage, EWMA appears to be the most efficient method with very little 

loss in efficiency.     

E. CHAPTER SUMMARY 

In this chapter, the methodology to detect shifts in underlying demand distribution 

for aircraft components was first validated on a data set for an imaginary Component Z.  

The processes to set up the required variables needed to use the Minitab program to 

produce CUSUM and EWMA charts were developed and validated. 

Control charts were developed using CUSUM and EWMA for four components 

spanning a wide range of variability.  The effectiveness of the charts relative to 

determining shifts in underlying trends and the efficiency of the charts relative to the time 

and expertise required to generate the charts were compared.   
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Both methods were very capable at detecting changes in the demand patterns 

when properly configured within Minitab.  CUSUM appeared to be slightly faster in 

detecting changes, while EWMA was much easier to set up across multiple data sets.  

While CUSUM requires a custom set up for each different component with an 

understanding of the underlying data distribution, EWMA requires a single graphical set 

up and is insensitive to the underlying data distribution.  For most component 

applications within the Navy, EWMA is a more efficient tool with only a slight loss of 

effectiveness.   
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VI. APPLICATION OF STUDY  

A. INTRODUCTION 

The use of CUSUM and EWMA techniques, as applied to detection of demand 

patterns for WRAs within the Naval Air Forces, has been examined.   When properly 

configured, both of these methods have been shown to be effective in determining 

changes in underlying demand patterns with the EWMA being the more efficient of the 

two.  While this thesis was focused on components from aircraft, the methods developed 

in this paper would have broad general application to any process where the user desired 

to know if the underlying data distribution has changed.     In this chapter, the author will 

discuss what steps will be required for the reader to apply this study to components or 

processes as desired.     

B. RECOMMENDATIONS – STEPS NEEDED TO APPLY  

As with any management effort, the reader who wishes to apply these techniques 

should determine the cost and benefit to do so.  By first focusing on those items that are 

high cost or high risk first, the most efficient use of resources can be assured.  After 

priority ranking the items or processes to be monitored, the following steps are suggested: 

1.  Determine what data is representative of the process that is to be monitored 

and if that data can be obtained with a reasonable level of effort.  A sufficient 

amount of historical data must be gathered to have an understanding of an in-

control mean and how much variation there is in the data before these tools 

can be effectively used.  A minimum of 30 data points is recommended.  

2. Obtain access to Minitab.  In many areas of the Department of Defense, this 

program is already licensed for use.  The reader may also purchase Minitab.  

(Other programs may be as effective in developing these charts, but the steps 

in developing and inputting the control variables would require revalidation.  

There are several ways to parameterize a CUSUM and EWMA, and one must 

attend carefully to the notation used by a given piece of software.) 
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3. Determine if EWMA or CUSUM charts are to be developed.  EWMA charts 

require less time and expertise to use, but CUSUM charts can be faster to 

alarm especially where the size of the change is known beforehand.   

4. For CUSUM charts, the user will require Anygeth.exe.   This Windows based 

program is available for free download at  

http://www.stat.umn.edu/cusum/software.htm. 

5. Follow the steps in Chapter V to set up Minitab with the correct variables and 

develop the control charts. 

6. Monitor the process and adjust the variables as needed.  Longer ARL lengths 

will give fewer false alarms at the price of slower reaction.   

7. Consider the overall system false alarm rate when setting component ARLs.  

For example, to have an ARL of 100 for a system managing four components, 

one would not use an ARL of 100 for each component, as that would result in 

an ARL of 25 for the set.  Rather, one could simply use an ARL of 400 for 

each of the four components, leading to a system ARL of 100.  Other 

allocations of ARL besides equal distribution are possible among components 

to get a desired system ARL.  (Serel, Moskowitz, Tang, 2000) 

C. CHAPTER SUMMARY 

EWMA and CUSUM techniques can provide alarms when the underlying data 

distribution changes.  This capability could be very valuable in a wide range of 

applications.  Effort is best applied to high cost or high risk items where representative 

data can be obtained.  By following the steps in this section, application of the findings 

presented in this thesis could be far ranging.   
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VII. CONCLUSIONS  

A. KEY POINTS AND RECOMMENDATIONS 

Maintaining aircraft in a high state of readiness around the globe is a large 

challenge for the Navy.  In order to keep the aircraft repaired and ready for missions, 

managers must allocate resources to keep spare parts available for use by maintainers 

when and where needed.  Predictions for future demand are made using historical 

demand patterns.  If the underlying data distributions of the spare requirements change, 

the predictions can be in error, leading to oversupply conditions if demand is falling or 

lack of spare parts needed to keep aircraft operational if demand is increasing.  Thus it is 

very important for managers to know if the underlying demand distribution of the spares 

requirements is changing.   

In this thesis, the author:  

• Examined the best data to monitor to track demand; 

• Validated the use of CUSUM and EWMA on a designed data set; 

• Developed a process to generate CUSUM and EWMA control charts using 
widely available software tools; 

• Analyzed data using CUSUM and EWMA from four components with a 
range of variability spanning the range typically found in fleet operational 
equipment; and 

• Made recommendations about the relative efficiency and effectiveness of 
the CUSUM and EWMA techniques.   

BCM data was found to be very representative of wholesale demand and can be 

easily obtained from the Navy 3M system.  CUSUM and EWMA were both validated 

against a designed data set and processes were developed to determine the correct values 

of variables required to set up these tools in Minitab.  Both CUSUM and EWMA were 

capable of detecting shifts in demand data.  CUSUM generally provide a faster alarm, but 

required considerably more expertise and time to use.  A unique set up along with an 

understanding the underlying data distribution was required for each component when 

developing CUSUM charts.  EWMA charts tended to be slightly slower in providing 
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alarms, but were much easier to set up with a single set up required for all components 

for a given ARL.  Overall, EWMA charts are more efficient to use with a slight loss in 

effectiveness.   

B. AREAS TO CONDUCT FURTHER RESEARCH 

While the use of CUSUM and EWMA, as described in this thesis, demonstrate 

the ability to detect changes in underlying data distributions using widely available tools, 

there is much more that could be done to expand the potential benefits. 

1.  The process as described still requires a considerable amount of human 

intervention.  BCM data must be extracted and loaded into a Minitab program 

manually. Each component would require individual monitoring.  If an 

integrated system was designed that would automatically load the BCM data 

into a computer system with EWMA tools running the background, alarms 

could be set up for a given ARL simply.  Early warning could thus be 

provided to inventory, engineering, logistics, and program managers for a 

very large number of components with no human intervention.  These alarms 

could allow managers to make mitigating actions before aircraft readiness was 

impacted.   

2. While the above system would provide alarm and detection of changes in 

underlying demand, it would not analyze the cause of the change.  In 

discussions with senior managers at NAVICP, they described the “holy grail” 

in demand for spares analysis.  This is the ability to mine data using variables 

such as BCM rates, removals, Turn-Around-Times, and then diagnose the 

nature and causes of changes in demand patterns.  Thus a manager would not 

only know that something is changing, but would also have insight into the 

cause of the change.   For example, if Removal, Repair and/or BCM rates are 

changing at a site, but not at other sites doing similar work, this indicates a 

potential support issue at the site where the change is occurring.  If site data 

for sites hosting similar aircraft could be combined, the combined demand 

data could provide early warning of an emerging change in failure mode on an 
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item before the change is apparent at any one site.  Historically these approaches 

have floundered due to inability to get real time data and lack of proper heuristics 

driving too many false alarms.  The integration of multiple data sets and the 

knowledge mining from these data sets would be a very valuable place for 

continued research.      

3. Care should be taken to set ARLs for components, regardless of whether a 

CUSUM or EWMA chart is used, to avoid a systemic rate of false alarms that is 

intolerable to management.  Further research into the allocation of ARL among 

components based on economic factors unique to NAVAIR and the Naval 

Aviation Enterprise would be useful.   

C.  SUMMARY 

The Navy is charged with maintaining combat ready aircraft all around the globe 

prepared to go into harm’s way to defend the interests of our country.  These missions can 

only be completed with aircraft that are properly maintained.  Spare parts must be available 

when and where needed and this requires projection of future demand.  If the demand 

patterns are changing, for any reason, managers need to know about the change in time to 

allow mitigating actions such that the readiness of our aircraft is sustained. 

In this thesis, the author has demonstrated that the CUSUM and EWMA methods are 

very capable of detecting changes in underlying distribution patterns.  The processes to 

prepare CUSUM and EWMA charts using widely available software tools were developed 

and validated.  The CUSUM charts are very effective at providing early alarm of changes but 

do require specialized knowledge and additional software tools to effectively use.  EWMA 

charts are nearly as effective and require much less time and skill to use.  With the use of 

these tools, Navy managers could take a more proactive response to issues enabling more 

aircraft to be in a state of combat readiness.   

While this thesis focused on a specific issue of spares for Navy aircraft, the concepts 

and methodologies developed within this thesis would readily apply to any process for which 

the user wanted to detect changes in sufficient time to allow mitigating actions.  

Recommendations were made for further research that could automate these processes and 

provide more information about how to solve the specific issue in addition to detecting the 

issue.     
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